Adrenal insufficiency is the clinical manifestation of deficient production or action of glucocorticoids, with or without deficiency also in mineralocorticoids and adrenal androgens. It is a life-threatening disorder that can result from primary adrenal failure or secondary adrenal disease due to impairment of the hypothalamic–pituitary axis. Prompt diagnosis and management are essential. The clinical manifestations of primary adrenal insufficiency result from deficiency of all adrenocortical hormones, but they can also include signs of other concurrent autoimmune conditions. In secondary or tertiary adrenal insufficiency, the clinical picture results from glucocorticoid deficiency only, but manifestations of the primary pathological disorder can also be present. The diagnostic investigation, although well established, can be challenging, especially in patients with secondary or tertiary adrenal insufficiency. We summarise knowledge at this time on the epidemiology, causal mechanisms, pathophysiology, clinical manifestations, diagnosis, and management of this disorder.

Introduction
Adrenal insufficiency is a life-threatening disorder that can result from primary adrenal failure or secondary adrenal disease due to impairment of the hypothalamic–pituitary axis. It is the clinical manifestation of deficient production or action of glucocorticoids, with or without deficiency also in mineralocorticoids and adrenal androgens. The cardinal clinical symptoms of adrenocortical insufficiency, as first described by Thomas Addison in 1855, include weakness, fatigue, anorexia, abdominal pain, weight loss, orthostatic hypotension, and salt craving; characteristic hyperpigmentation of the skin occurs with primary adrenal failure. Whatever the cause, adrenal insufficiency was invariably fatal until 1949, when cortisone was first synthesised, and glucocorticoid-replacement treatment became available. However, despite this breakthrough, the diagnosis and treatment of patients with the disorder remain challenging.

Epidemiology
According to the underlying mechanism, adrenal insufficiency is classed as primary, secondary, or tertiary. Primary adrenal insufficiency results from disease intrinsic to the adrenal cortex. Central adrenal insufficiency, the collective name for the secondary and tertiary types, is caused by impaired production or action of corticotropin. Secondary adrenal insufficiency results from pituitary disease that hampers the release of corticotropin or from a lack of responsiveness of the adrenal glands to this hormone. Tertiary adrenal insufficiency results from the impaired synthesis or action of corticotropin-releasing hormone, arginine vasopressin, or both, from the hypothalamus, which in turn inhibits secretion of corticotropin.

In Europe, the prevalence of chronic primary adrenal insufficiency has increased from 40–70 cases per million people in the 1960s to 93–144 cases per million by the end of the 20th century, with an estimated incidence now of 4–6·0 new cases per million population per year. Tuberculosis was the most common cause of primary adrenal insufficiency during the first half of the 20th century, but lately autoimmune adrenal insufficiency has become the most common form. The increase in the frequency of primary adrenal insufficiency over the past few decades, associated with a decline in the prevalence of tuberculosis, is indicative of the rising proportion of cases of autoimmune adrenal insufficiency. In a series of 615 patients with Addison’s disease, studied between 1969 and 2009, the autoimmune form was diagnosed in 82% of cases, the tuberculosis-related form in 9%, and other causes in about 8% of cases. Primary adrenal insufficiency occurs more frequently in women than in men, and can present at any age, although most often appears between the ages of 30 and 50 years.

The frequency of the various forms of primary adrenal insufficiency in children differs substantially from that in the adult population; the genetic forms are more common. In a series of 103 children with Addison’s
Secondary adrenal insufficiency is more common than primary adrenal insufficiency. It has an estimated prevalence of 150–280 per million and affects women more frequently than men. The age at diagnosis peaks in the sixth decade of life. A systematic review and meta-analysis of reported prevalences of hypopituitarism in adult patients who had received cranial irradiation for non-pituitary tumours showed that the point prevalence of any degree of hypopituitarism was 0.66 (95% CI 0.55–0.76) and the prevalence of corticotropin deficiency was 0.22 (0.15–0.30). The most common cause of tertiary adrenal insufficiency is long-term administration of exogenous glucocorticoids, which leads to prolonged suppression of hypothalamic secretion of corticotropin-releasing hormone.

Causal mechanisms
Primary adrenal insufficiency

The causes of primary adrenal insufficiency are listed in table 1. In developed countries, 80–90% of cases of primary adrenal insufficiency are caused by autoimmune adrenalitis, which can be isolated (40%) or part of an autoimmune polyendocrinopathy syndrome (60%). Autoimmune Addison's disease is characterised by destruction of the adrenal cortex by cell-mediated immune mechanisms. Antibodies against steroid 21-hydroxylase are detected in about 85% of patients with idiopathic primary adrenal insufficiency, but only rarely in patients with other causes of adrenal insufficiency. In addition, other autoantigens, including steroid 17α-hydroxylase and the cholesterol side-chain cleavage enzyme, have been identified in patients with autoimmune Addison’s disease, as well as patients with primary ovarian failure. T cells and cellular immunity also have important roles in the pathogenesis of autoimmune Addison’s disease, and the generation of

Pathogenetic mechanisms

Clinical manifestations in addition to adrenal insufficiency

<table>
<thead>
<tr>
<th>Autoimmune adrenalitis</th>
<th>Clinical manifestations in addition to adrenal insufficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated</td>
<td>None</td>
</tr>
<tr>
<td>APS type 1 (APECED)</td>
<td>Chronic mucocutaneous candidiasis, hypoparathyroidism, other autoimmune diseases</td>
</tr>
<tr>
<td>APS type 2</td>
<td>Thyroid autoimmune disease, type 1 diabetes, other autoimmune diseases</td>
</tr>
<tr>
<td>APS type 4</td>
<td>Other autoimmune diseases (autoimmune gastritis, vitiligo, coeliac disease, alopecia), excluding thyroid disease and type 1 diabetes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infectious adrenalitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculous adrenalitis</td>
</tr>
<tr>
<td>AIDS</td>
</tr>
<tr>
<td>Fungal adrenalitis</td>
</tr>
<tr>
<td>Syphilis</td>
</tr>
<tr>
<td>African trypanosomiasis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bilateral adrenal haemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meningococcal sepsis (Waterhouse-Friderichsen syndrome), primary antiphospholipid syndrome</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bilateral adrenal metastases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainly cancers of the lung, stomach, breast, and colon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bilateral adrenal infiltration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary adrenal lymphoma, amyloidosis, haemochromatosis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bilateral adrenalectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unresolved Cushing's syndrome, bilateral adrenal masses, bilateral phaeochromocytoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug-induced adrenal insufficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticoagulants (heparin, warfarin), tyrosine-kinase inhibitors (sunitinib)</td>
</tr>
<tr>
<td>Aminoglutethimide</td>
</tr>
<tr>
<td>Trilostane</td>
</tr>
<tr>
<td>Ketoconazole, fluconazole, etomidate</td>
</tr>
<tr>
<td>Phenobarbital</td>
</tr>
<tr>
<td>Phenytoin, rifampicin, troglitazone</td>
</tr>
</tbody>
</table>

(Table 1 continues on next page)
Furthermore, several genes that confer susceptibility to autoimmune Addison’s disease have been identified. In addition to the MHC haplotypes DR3-DQ2 and DR4-DQ8, cytotoxic T-lymphocyte antigen 4, protein tyrosine-phosphatase non-receptor type 22, and the MHC class II transactivator have been associated with the condition. Now that large genome-wide screening projects are feasible, new susceptibility genes are likely to be identified in the near future. Primary adrenal insufficiency can also present in the context of autoimmune polyendocrinopathy syndromes.

Table 1: Causes of primary adrenal insufficiency

<table>
<thead>
<tr>
<th>Pathogenetic mechanisms</th>
<th>Clinical manifestations in addition to adrenal insufficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal hypoplasia congenita</td>
<td>Weakness, spasticity, dementia, blindness, quadriplegia. Adrenoleukodystrophy is a milder variant of adrenoleukodystrophy with slower progression</td>
</tr>
<tr>
<td>Congenital adrenal hyperplasia</td>
<td></td>
</tr>
<tr>
<td>21-hydroxylase deficiency</td>
<td>Hyperandrogenism</td>
</tr>
<tr>
<td>11β-hydroxylase deficiency</td>
<td>Hyperandrogenism, hypertension</td>
</tr>
<tr>
<td>3β-hydroxysteroid dehydrogenase type 2 deficiency</td>
<td>Ambiguous genitalia in boys, postnatal virilisation in girls</td>
</tr>
<tr>
<td>17α-hydroxylase deficiency</td>
<td>Pubertal delay in both sexes, hypertension</td>
</tr>
<tr>
<td>P450 oxidoreductase deficiency</td>
<td>Skeletal malformation (Antley-Bixler syndrome), abnormal genitalia</td>
</tr>
<tr>
<td>P450 side-chain cleavage deficiency</td>
<td></td>
</tr>
<tr>
<td>Congenital lipid adrenal hyperplasia</td>
<td></td>
</tr>
<tr>
<td>Smith-Lemli-Opitz syndrome</td>
<td></td>
</tr>
<tr>
<td>Adrenal hypoplasia congenita</td>
<td></td>
</tr>
<tr>
<td>X-linked</td>
<td></td>
</tr>
<tr>
<td>Xp21 contiguous gene syndrome</td>
<td></td>
</tr>
<tr>
<td>SF-1 linked</td>
<td></td>
</tr>
<tr>
<td>IMAGE syndrome</td>
<td></td>
</tr>
<tr>
<td>Kearns-Sayre syndrome</td>
<td></td>
</tr>
<tr>
<td>Wolman’s disease</td>
<td></td>
</tr>
<tr>
<td>Sitosterolemia (also known as phytosterolaemia)</td>
<td></td>
</tr>
<tr>
<td>Familial glucocorticoid deficiency or corticotropin insensitivity syndromes</td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>Hyperpigmentation, tall stature, characteristic facial features, such as hypertelorism and frontal bossing, lethargy and muscle weakness but normal blood pressure</td>
</tr>
<tr>
<td>Type 2</td>
<td>Hyperpigmentation, normal height, hypoglycaemia, lethargy, and muscle weakness, but normal blood pressure</td>
</tr>
<tr>
<td>Variant of familial glucocorticoid deficiency</td>
<td>Growth failure, increased chromosomal breakage, natural killer cell deficiency</td>
</tr>
<tr>
<td>Primary generalised glucocorticoid resistance or Chrousos syndrome</td>
<td>Fatigue, hypoglycaemia, hypertension, hyperandrogenism</td>
</tr>
<tr>
<td>Triple A syndrome (Allgrove’s syndrome)</td>
<td>Achalasia, alacrima, deafness, mental retardation, hyperkeratosis</td>
</tr>
</tbody>
</table>

Autoimmune polyendocrinopathy syndrome type 1, which is also known as APECED (autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy) syndrome, is a rare, autosomal recessive disorder caused by mutations in the autoimmune regulator (AIRE) gene. It is most common among particular population groups—people from Sardinia and Finland and Iranian Jews—and is characterised by chronic mucocutaneous candidiasis, adrenocortical insufficiency, hypoparathyroidism, hypoplasia of the dental enamel, and nail dystrophy; other autoimmune disorders, such as type 1 diabetes and pernicious anaemia, can develop later in life. Antibodies...
against interferon-ω and interferon-α are both sensitive and specific for type 1 autoimmune polyendocrinopathy syndrome, and mutational analysis of the AIRE gene confirms the diagnosis in more than 95% of cases. Type 2 autoimmune polyendocrinopathy syndrome is characterised by autoimmune adrenal insufficiency and autoimmune thyroid disease, with or without type 1 diabetes; it is more prevalent than the type 1 form. It is often associated with other autoimmune conditions, affects women more commonly than men, and generally presents in the fourth decade of life. Autoimmune polyendocrinopathy syndrome type 4 is a rare syndrome characterised by the association of autoimmune Addison’s disease with one or more minor component autoimmune diseases (eg, hypogonadism, atrophic gastritis, pernicious anaemia, coeliac disease, myasthenia gravis, vitiligo, alopecia, and hypophysitis) but excluding the major component disease characteristics of types 1 and 2 (chronic candidosis, hypoparathyroidism, thyroid autoimmune diseases, type 1 diabetes).5

Table 1 lists several infectious, drug-induced, and other causes of primary adrenal insufficiency, then genetic disorders. Of the genetic causes, adrenoleukodystrophy, is an X-linked recessive disorder that affects one in 20 000 men and boys and is caused by mutations in the ATP-binding cassette, subfamily D, member 1 (ABCD1) gene. These mutations prevent normal transport of very-long-chain fatty acids into peroxisomes, thereby preventing their β-oxidation and breakdown. Accumulation of abnormal amounts of these fatty acids in affected organs (CNS, Leydig cells of the testes, adrenal cortex) is thought to be the underlying pathological process. The clinical features include neurological impairment resulting from white-matter demyelination...
and primary adrenal insufficiency, which presents in infancy or childhood. The two major forms of adrenoleukodystrophy are the cerebral form (50% of cases; early childhood manifestation with rapid progression) and adrenomyeloneuropathy (35% of cases; onset in early adulthood with slow progression) in which demyelination is restricted to the spinal cord and peripheral nerves. Since adrenal insufficiency can be the initial clinical manifestation, adrenoleukodystrophy should be considered in young male patients with adrenal insufficiency and confirmed biochemically by measurement of plasma concentrations of very-long-chain fatty acids.1–3,47

Primary adrenal insufficiency occasionally presents acutely as a consequence of bilateral adrenal haemorrhage in patients with antiphospholipid syndrome. It is characterised by recurrent arterial and venous thrombosis, complications during pregnancy, and the presence of autoantibodies to phospholipids. The condition can be isolated or manifest in the context of connective tissue disorders or malignant disorders.9–10

In children, the most common cause of primary adrenal insufficiency is congenital adrenal hyperplasia, a group of autosomal recessive disorders resulting from deficiency of one of the enzymes needed for synthesis of cortisol in the adrenal cortex. The most common form is classic 21-hydroxylase deficiency, a condition characterised by low synthesis of glucocorticoids and, in many cases, mineralocorticoids, adrenal hyperandrogenism, and impaired development and function of the adrenal medulla.10–12 More rare forms are caused by deficiency of 11β-hydroxylase, 17α-hydroxylase, 17,20-lyase, 3β-hydroxysteroid dehydrogenase, or P450 oxidoreductase.

Central adrenal insufficiency

Secondary adrenal insufficiency results from any process that involves the pituitary gland and interferes with corticotropin secretion (table 2). The corticotropin deficiency can be isolated or can occur in association with deficiencies of other pituitary hormones. Isolated corticotropin deficiency generally results from an autoimmune process, as shown by the frequent association with other autoimmune endocrine disorders (thyroiditis, type 1 diabetes).13,14 Genetic causes of corticotropin deficiency include loss-of-function mutations in the genes encoding pro-opiomelanocortin gene and proprotein convertase subtilisin or kexin type 1 inhibitor, which also result in early-onset severe obesity,15,16 as well as mutations in TPIT, a T-box factor that controls transcription of the pro-opiomelanocortin gene in corticotrophs only.17,18

Tertiary adrenal insufficiency results from processes that involve the hypothalamus and interfere with secretion of corticotropin-releasing hormone, arginine vasopressin, or both (table 3). Suppression of the hypothalamic-pituitary-adrenal (HPA) axis by long-term administration of high doses of glucocorticoids is the most common cause. Therefore, in most cases, slow withdrawal of glucocorticoid treatment over 9–12 months is needed for full recovery of the HPA axis.19–21 Tertiary adrenal insufficiency also occurs in patients cured of Cushing’s syndrome, since the persistently high serum cortisol concentrations before treatment suppress the HPA axis in the same way as high exogenous doses of glucocorticoids.22–24 Finally, drugs such as mifepristone, a glucocorticoid receptor antagonist, antipsychotics, and antidepressants cause target-tissue resistance to glucocorticoids through impairment of glucocorticoid signal transduction.25

Pathophysiology and clinical presentation

The adrenal cortex has three distinct zones, which secrete the various hormones under the direct control of well understood feedback mechanisms. Aldosterone is synthesised in the outermost zone, the zona glomerulosa. Its secretion is predominantly regulated by the renin–angiotensin system and extracellular potassium concentrations; therefore, it is not impaired in secondary and tertiary adrenal insufficiency. Cortisol secretion from the zona fasciculata is primarily regulated by corticotropin, which is released from the anterior pituitary in response to the hypothalamic neuropeptides corticotropin-releasing hormone and arginine vasopressin.26–28 In healthy people, cortisol secretion is pulsatile, and circulating cortisol concentrations fluctuate naturally in a circadian fashion, highest in the early morning (0600–0800 h) and lowest around midnight.29–32 The adrenal androgens, androstenedione, dehydroepiandrosterone, and the sulphate ester of dehydroepiandrosterone, are synthesised in the innermost zona reticularis.33 Dehydroepiandrosterone and its sulphate show a characteristic, age-associated pattern, with very high concentrations in the neonatal period, a decline to very low concentrations during the first few months of life, and a continuous increase starting between age 6 and 10 years, termed adrenarche. Peak concentrations of these two hormones are achieved during the third decade of life; they then decline steadily from the fifth decade (adrenopause) with concentrations decreasing to 10–20% of the maximum at around age 70 years. The age-related decline in dehydroepiandrosterone sulphate does not reflect a general loss of adrenocortical output because cortisol concentrations are maintained and even slightly rise with age.34–36

The clinical manifestations of primary adrenal insufficiency (table 4) result from deficiency of all adrenocortical hormones (aldosterone, cortisol, androgens); they can also include signs of other concurrent autoimmune conditions. Most of the symptoms are non-specific and can delay diagnosis and treatment of the condition. Hypoglycaemia can be the presenting sign in children with adrenal insufficiency, and it can lead to deterioration of glycaemic control and
Pathogenetic mechanisms	Clinical manifestations in addition to adrenal insufficiency
Space-occupying lesions or trauma | Pituitary tumours (adenomas, cysts, craniopharyngiomas, ependymomas, meningiomas, rarely carcinomas) or trauma (pituitary stalk lesions) | Low corticotropin secretion | Anterior or posterior pituitary hormone deficiencies, or both, and associated symptoms
Pituitary surgery or irradiation for pituitary tumours, tumours outside the HPA axis or leukaemia | Low corticotropin secretion | Anterior or posterior pituitary hormone deficiencies, or both, and primary disease-associated symptoms
Infections or infiltrative processes (lymphocytic hypophysitis, haemochromatosis, tuberculosis, meningitis, sarcoidosis, actinomycosis, histiocytosis X, Wegener’s granulomatosis) | Low corticotropin secretion | Anterior or posterior pituitary hormone deficiencies, or both, and primary disease-associated symptoms
Pituitary apoplexy | Low corticotropin secretion | Abrupt onset of severe headache, visual disturbance, nausea, vomiting; anterior or posterior pituitary hormone deficiencies, or both, and primary disease-associated symptoms
Sheehan’s syndrome (peripartum pituitary apoplexy and necrosis) | Low corticotropin secretion | Peripartum abrupt onset of severe headache, visual disturbance, nausea, and vomiting; anterior or posterior pituitary hormone deficiencies or both, and primary disease-associated symptoms

Genetic disorders

| Transcription factors involved in pituitary development | HESX homebox 1 | HESX1 gene mutations | Panhypopituitarism; short stature, delayed puberty, cognitive changes, septo-optic dysplasia
Orthodentical homebox 2 | Mutations in gene for orthodentical homebox 2 | Panhypopituitarism; neonatal hypoglycaemia, pituitary hypoplasia, ectopic posterior pituitary gland
LIM homebox 4 | Mutations in gene for LIM homebox 4 | Panhypopituitarism; growth hormone, thyrotropin, and corticotropin deficiencies
PROP paired-like homebox 1 | Mutations in gene for PROP paired-like homebox 1 | Panhypopituitarism; late-onset corticotropin deficiency, occasionally enlarged sella turcica
SRY (sex-determining region Y) Box 3 | Mutations in gene for SRY (sex-determining region Y) box 3 | Panhypopituitarism; infundibular hypoplasia, hypopituitarism, mental retardation
T-box 19 Congenital pro-opiomelanocortin deficiency | Mutations in gene for T-box 19 | Congenital isolated corticotropin deficiency
Prader-Willi syndrome Deletion or silencing of genes in imprinting centre for the syndrome | Hypotonia, obesity, mental retardation, hypogonadism

Table 2: Causes of secondary adrenal insufficiency

| Space-occupying lesions or trauma | Hypothalamic tumours (craniohypophyseal or metastasis from lung or breast cancer) | Low CRH secretion | Anterior or posterior pituitary hormone deficiencies, or both, and primary disease-associated symptoms
Hypothalamic surgery or irradiation for CNS or nasopharyngeal tumours | Low CRH secretion | Anterior or posterior pituitary hormone deficiencies, or both, and primary disease-associated symptoms
Infections or infiltrative processes (lymphocytic hypophysitis, haemochromatosis, tuberculosis, meningitis, sarcoidosis, actinomycosis, histiocytosis X, Wegener’s granulomatosis) | Low CRH secretion | Anterior or posterior pituitary hormone deficiencies, or both, and primary disease-associated symptoms
Trauma, injury (fracture of skull base) | Low CRH secretion | Anterior or posterior pituitary hormone deficiencies, or both, and primary disease-associated symptoms

Drug-induced adrenal insufficiency

Glucocorticoid therapy (systemic or topical) or endogenous glucocorticoid hypersecretion (Cushing’s syndrome) | Low CRH and corticotropin secretion | Primary disease-associated symptoms
Mifepristone Tissue resistance to glucocorticoids through impairment of glucocorticoid signal transduction | If excessive it can cause severe glucocorticoid deficiency; no other symptoms, unless related to drug
Antipsychotics (chlorpromazine), antidepressants (imipramine) Inhibition of glucocorticoid-induced gene transcription | None, unless related to drug

Table 3: Causes of tertiary adrenal insufficiency
the need for reduction of the total daily insulin doses in patients with type 1 diabetes. A specific sign of chronic, but not acute, primary adrenal insufficiency is hyperpigmentation, which predominately affects areas of skin subjected to pressure (elbows, knuckles, palmar creases, lips, buccal mucosa). It is caused by stimulation of the melanocortin-1 receptor in the skin by the high circulating corticotropin concentrations.74 The preclinical time course of adrenal insufficiency can span many years after detection of early metabolic changes by screening, even in the presence of high specific autoantibody titres and significantly raised corticotropin concentrations.48 In autoimmune adrenal insufficiency, the first zone affected by immune-mediated destruction is generally the zona glomerulosa, possibly because it is thinner than the other two, or is more vulnerable to autoimmune attack. This feature might explain the first step of adrenal failure, which is characterised by high plasma renin activity and low aldosterone concentrations, followed by a phase of progressive glucocorticoid deficiency, initially with inadequate response to stressful stimuli and then by a phase of overt failure with low basal cortisol concentrations.49,50

The clinical manifestations of secondary or tertiary adrenal insufficiency result from glucocorticoid deficiency only (secretion of aldosterone and adrenal androgens is preserved); however, they can also include signs of the primary underlying disorder. Hyperpigmentation is not present because corticotropin secretion is not increased, and hyponatraemia and volume expansion can occur secondary to a so-called inappropriate increase in arginine vasopressin secretion. There might also be symptoms and signs of deficiency of other anterior pituitary hormones.

A life-threatening adrenal crisis can be the first presentation of adrenal insufficiency. Clinical features include vomiting, abdominal pain, myalgia, joint pains, severe hypotension, and hypovolaemic shock. The acute presentation can be precipitated by a physiological stress, such as surgery, trauma, or an intercurrent infection.

Diagnosis of adrenal insufficiency

There are three main aims in the diagnosis of adrenal insufficiency (table 5): to confirm inappropriately low cortisol secretion; to find out whether the adrenal insufficiency is primary or central; and to delineate the underlying pathological process.2,3 Whatever the cause, the diagnosis of adrenal insufficiency depends entirely on the demonstration that cortisol secretion is inappropriately low. All current stimulation tests measure total cortisol concentration, which is related closely to the biologically active free cortisol in most, but possibly not all, situations.75 High concentrations of cortisol-binding globulin in patients receiving oral oestrogens or in pregnancy can lead to falsely normal results.76 Conversely, in patients with cirrhosis, concentrations of cortisol-binding globulin are low and can lead to falsely abnormal results.77

Measurement of serum free cortisol concentrations can offer additional information, although the assay is not generally available; salivary cortisol concentration might be a useful alternative.78

In healthy people, serum cortisol concentrations are highest in the early morning, at 275–555 nmol/L (100–200 μg/L). A low serum cortisol concentration (<80 nmol/L [30 μg/L]) in a blood sample taken in the early morning strongly suggests adrenal insufficiency.79,80 By contrast, a morning serum cortisol concentration of more than 415 nmol/L (150 μg/L) predicts a normal serum cortisol response to insulin-induced hypoglycaemia or a short corticotropin test in almost all patients.78,80 Simultaneous measurements of cortisol and corticotropin concentrations identify most cases of primary adrenal insufficiency.

Similarly, a salivary cortisol concentration at 0800 h of more than 16 nmol/L (5·8 μg/L) excludes adrenal...
insufficiency, whereas a value of less than 5 nmol/L (1.8 μg/L) indicates a high probability of adrenal insufficiency. This test has been used to screen for adrenal insufficiency, but it has not been fully validated as the only diagnostic test.

Measurement of urinary free cortisol concentrations is not helpful in the diagnosis of adrenal insufficiency mainly because the lower levels of the range are not contributory. Measurement of the basal plasma corticotropin concentration can generally distinguish between primary and central adrenal insufficiency. With simultaneous measurement of basal serum cortisol concentration, measurement of plasma corticotropin can both confirm the diagnosis of adrenal insufficiency and establish its cause.84 In healthy people, corticotropin concentrations at 0800 h are 4.5–12 pmol/L (20–52 ng/L) in a two-site chemiluminescent assay. In primary adrenal insufficiency, the 0800 h plasma corticotropin concentration is high, and is associated with high plasma renin concentration or activity, low aldosterone concentrations, hyponatraemia, and hyperkalaemia. By contrast, plasma corticotropin concentrations are low or low normal in secondary or tertiary adrenal insufficiency. Plasma concentrations of renin and aldosterone are generally unaffected in secondary or tertiary adrenal insufficiency, but mineralocorticoid deficiency can occur after a very long duration of corticotropin deficiency.89 In autoimmune adrenal insufficiency, plasma renin concentrations are usually the first to increase, followed by an increase in corticotropin and decrease in aldosterone concentrations.80,85

Adrenal insufficiency is characterised by adrenal androgen deficiency. Serum concentrations of dehydroepiandrosterone and its sulphate are low in patients with primary or central adrenal insufficiency, but these characteristics facilitate diagnosis only in patients younger than 40 years, because of the physiological, age-related decline in adrenal androgen secretion.

Adrenal insufficiency is generally diagnosed by the standard-dose corticotropin test, which is safe, reliable and accurate.80,81 The test entails stimulation of the adrenal glands by pharmacological doses (250 μg) of exogenous corticotropin 1–24, which has the full biological potency of native 39-aminoacid corticotropin.81–84 It is administered intravenously or intramuscularly, and serum cortisol concentrations are measured at baseline then 30 min and 60 min after stimulation. A peak cortisol concentration is defined as normal if more than 500 nmol/L (180 μg/L). The standard-dose corticotropin test should not be used during the first 4–6 weeks after a hypothalamic or pituitary insult, because the adrenal cortex might still respond to exogenous corticotropin administration adequately, and the result could be falsely normal.80,85

Table 5: Diagnostic tests for adrenal insufficiency

<table>
<thead>
<tr>
<th>Normal range*</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary adrenal insufficiency</td>
<td></td>
</tr>
<tr>
<td>0800 h basal serum cortisol</td>
<td>165–680 nmol/L</td>
</tr>
<tr>
<td>0800 h basal plasma corticotropin</td>
<td>4.5–12 pmol/L</td>
</tr>
<tr>
<td>24 h urinary free cortisol</td>
<td>11–84 μg/24 h (men); 10–34 μg/24 h (women)</td>
</tr>
<tr>
<td>Standard-dose corticotropin test</td>
<td></td>
</tr>
<tr>
<td>Peak cortisol</td>
<td>>500 nmol/L (sensitivity 90%, specificity 100%)</td>
</tr>
<tr>
<td>Secondary and tertiary adrenal insufficiency</td>
<td></td>
</tr>
<tr>
<td>0800 h basal serum cortisol</td>
<td>165–680 nmol/L</td>
</tr>
<tr>
<td>0800 h basal plasma corticotropin</td>
<td>4.5–12 pmol/L</td>
</tr>
<tr>
<td>Standard-dose corticotropin test</td>
<td></td>
</tr>
<tr>
<td>Peak cortisol</td>
<td>>500 nmol/L (sensitivity 90%, specificity 100%)</td>
</tr>
<tr>
<td>Low-dose corticotropin test</td>
<td></td>
</tr>
<tr>
<td>Peak cortisol</td>
<td>>500 nmol/L (sensitivity 90%, specificity 90%)</td>
</tr>
<tr>
<td>Prolonged corticotropin test</td>
<td></td>
</tr>
<tr>
<td>Peak cortisol</td>
<td>>500 nmol/L</td>
</tr>
<tr>
<td>Insulin tolerance test</td>
<td></td>
</tr>
<tr>
<td>Peak cortisol</td>
<td>>500 nmol/L</td>
</tr>
</tbody>
</table>

| CAH=congenital adrenal hyperplasia. | For serum cortisol concentrations, multiply by 0.363 to convert nmol/L to μg/L. For plasma corticotropin concentrations, multiply by 4.5 to convert pmol/L to ng/L. For serum 17α-hydroxypregesterone concentrations, multiply by 0.331 to convert pmol/L to ng/dL. Sensitivity and specificity for the standard-dose and low-dose corticotropin tests are given in comparison with the insulin-induced hypoglycaemia test, which is regarded as the gold standard. |

Table 5: Diagnostic tests for adrenal insufficiency
Since some patients with adrenal insufficiency show a normal cortisol response in the standard-dose corticotropin test because the pharmacological dose of corticotropin is sufficient to elicit a response,1,26 studies have explored the use of a low-dose test (1 μg or 500 ng/1·73 m²) to increase the sensitivity.84,85 This test can be more sensitive and specific than the standard test,86–89 but technical details can influence its accuracy.90 Therefore, it should be reserved for patients with mild primary adrenal insufficiency or central adrenal insufficiency of recent origin (4–6 weeks duration).85–89

Prolonged stimulation with exogenous corticotropin is used to differentiate between primary and secondary or tertiary adrenal insufficiency. In primary adrenal insufficiency, the adrenal glands do not respond to corticotropin, whereas in secondary or tertiary insufficiency, they respond after longer periods of stimulation with corticotropin. In the test, 250 μg corticotropin is given intravenously as an infusion over 8 h or over 24 h on 2 or 3 consecutive days; serum cortisol concentration and 24 h urinary cortisol and 17-hydroxycorticoid concentrations are measured before and after the infusion.91

When secondary adrenal insufficiency is suspected, the insulin tolerance test is another choice for confirmation of the diagnosis, particularly in patients with suspected corticotropin deficiency of recent origin. This test investigates the integrity of the HPA axis and is widely regarded as the gold standard. In addition, it has the advantage of assessing growth hormone reserve. However, it should not be done in patients with cardiovascular disease or a history of seizures, and a high degree of supervision is necessary. Insulin (0·10–0·15 U/kg) is given to induce hypoglycaemia, and cortisol concentrations are measured every 30 min for at least 120 min.92,93

The corticotropin-releasing hormone test assesses pituitary corticotropin reserve. This test can be useful in distinguishing secondary from tertiary adrenal insufficiency, although this distinction is seldom important in terms of treatment. It entails intravenous administration of corticotropin-releasing hormone at a dose of 1 μg/kg (up to a maximum of 100 μg) and measurement of serum cortisol and plasma corticotropin concentrations at baseline, every 15 min to 1 h, then every 30 min to 2 h after stimulation. In patients with secondary adrenal insufficiency, there is little or no corticotropin response, whereas in those with tertiary disease, there is an exaggerated and long-lasting corticotropin response.44

We emphasise that none of these dynamic tests, including the insulin tolerance test, correctly classifies all patients with adrenal insufficiency. Mild secondary adrenal insufficiency can be missed, and healthy individuals can show slightly abnormal responses. Therefore, clinical judgment should prevail, and patients with persisting symptoms suggesting adrenal insufficiency should be reassessed.

The diagnosis of autoimmune adrenal insufficiency is based on the presence of autoantibodies to the adrenal cortex, radiological evidence of non-enlarged (normal or small) adrenal glands, the presence of other autoimmune diseases, and the exclusion of other known causes of adrenal insufficiency. Autoantibodies to the adrenal cortex or 21-hydroxylase are present in more than 90% of patients with autoimmune adrenalitis of recent onset. Furthermore, autoantibodies against other steroidogenic enzymes (P450scC, P450c17) and antibodies to steroid-producing cells are present in some patients and can be predictive markers of primary ovarian failure.1,3,32–34,45,92,93

In male patients with isolated Addison’s disease and no autoantibodies present, plasma concentrations of very-long-chain fatty acids (chain length of ≥24 carbon atoms; C26, C26/C22, and C24/C22 ratios) should be measured to exclude X-linked adrenoleukodystrophy.9

Patients with no associated autoimmune disease and no autoantibodies present should undergo CT of the adrenal glands. In tuberculosis adrenalitis, which should be part of the differential diagnosis in developing countries and immigrant populations, CT shows hyperplasia of the adrenal glands in the early stages and spotty calcifications in the late stages of the disease. Rarer causes of adrenal insufficiency that can be detected by adrenal CT include bilateral adrenal lymphoma, adrenal metastases, or adrenal infiltration (sarcoidosis, amyloidosis, haemochromatosis).1,3,32–35 If central adrenal insufficiency is suspected, MRI of the hypothalamic and pituitary regions should be done. It can reveal pituitary adenomas, craniopharyngiomas, meningiomas, metastases, and infiltration by sarcoidosis, Langerhans cell histiocytosis, or other granulomatous disease.94,95 Imaging is not required if antibodies to the adrenal cortex are present.92,93

Treatment

Adrenal insufficiency is potentially life-threatening. Treatment should be initiated as soon as the diagnosis is confirmed, or sooner if the patient presents in adrenal crisis (panel).1,3

A very important part of the management of chronic adrenal insufficiency is education of the patient and his or her family. They need to understand the importance of life-long replacement therapy, the need to increase the usual glucocorticoid dose during stress, and the need to notify medical staff if the patients are to undergo any surgical procedure. In addition, they must always have supplies of hydrocortisone injections and should be taught how and when to administer them.96,97

Patients with adrenal insufficiency should be treated with hydrocortisone (or cortisone acetate if hydrocortisone is not available), which is the most physiological option for glucocorticoid replacement. The recommended daily hydrocortisone dose is 10–12 mg/m²; it can be given in two to three doses, with administration of half to two-thirds of the total daily dose in the morning.1,3,32,34,86–88
Small decreases in bone mineral density, probably from use of higher than recommended doses, as well as impaired quality of life, have been documented in patients treated with hydrocortisone. Longer-acting synthetic glucocorticoids, such as prednisolone, prednisone, and dexamethasone, should be avoided because the longer duration of action can lead to signs of chronic glucocorticoid excess.
preparations that result in both delayed and sustained release of the hormone have been developed lately, and are under clinical investigation. These formulations result in more stable cortisol concentrations throughout the day and reproduce the physiological cortisol rise during early morning hours after oral intake of the preparation at bedtime. A once-daily dual-release hydrocortisone tablet has also been developed to obtain a more physiological circadian-based serum cortisol exposure-time profile. Compared with the conventional approach, treatment with this preparation improved cardiovascular risk factors, glucose metabolism, and quality of life, all of which can help to improve outcome in patients with adrenal insufficiency.

In the absence of objective variables to assess the adequacy of replacement therapy, the physician has to rely primarily on symptoms and signs that suggest under-replacement or over-replacement of glucocorticoids, to titrate the glucocorticoid replacement dose appropriately, and to prevent significant morbidity.

During minor illness or surgical procedures, the dose of glucocorticoid can be increased to up to three times the usual maintenance dose. During major illness or surgery, doses of glucocorticoid up to ten times the daily production rate might be needed to avoid an adrenal crisis.

In primary adrenal insufficiency, mineralocorticoid replacement therapy is necessary to prevent sodium loss, intravascular volume depletion, and hyperkalaemia. It is given in the form of fludrocortisone (9-α-fluorohydrocortisone) in a dose of 0.05–0.20 mg daily, in the morning. The dose of fludrocortisone is titrated individually on the basis of blood pressure, serum sodium and potassium concentrations, and plasma renin activity concentrations. The mineralocorticoid dose might have to be increased in the summer, especially if patients are exposed to temperatures higher than 29°C. In secondary or tertiary adrenal insufficiency, mineralocorticoid replacement is not necessary, but replacement of other anterior pituitary deficits might be.

In women, the adrenal cortex is the main source of androgen production in the form of dehydroepiandrosterone and its sulphate. Treatment with dehydroepiandrosterone improves mood and general wellbeing in adult patients and in children and adolescents with adrenal insufficiency. Dehydroepiandrosterone replacement should be considered in patients whose wellbeing is greatly impaired despite optimum glucocorticoid and mineralocorticoid replacement. A single oral morning dose of 25–50 mg is sufficient to maintain serum concentrations within the normal range. Treatment surveillance should include measurement of serum concentrations of dehydroepiandrosterone sulphate (aiming at the middle of the normal range for healthy young people) and female patients should be advised to report any androgenic side-effects.

The aim of treatment in classic congenital adrenal hyperplasia is not only to provide adequate glucocorticoid and mineralocorticoid replacement to prevent adrenal crises, but also to suppress the excess secretion of corticotropin from the anterior pituitary to decrease the overproduction of adrenal androgens. In childhood, satisfactory control of adrenal androgen secretion is generally achieved with 10–15 mg/m² hydrocortisone daily divided into three doses; higher doses might be needed in the neonatal period. Since these doses exceed physiological cortisol secretion, patients should be monitored carefully for signs of iatrogenic Cushing’s syndrome. Treatment efficacy is assessed by the growth velocity, the rate of skeletal maturation, weight gain, and serum concentrations of 17-hydroxyprogesterone and androstenedione at 0800 h. Mineralocorticoid replacement should be started in patients with classic congenital adrenal hyperplasia who have impaired aldosterone secretion.

Adrenal crisis is a life-threatening emergency that occurs frequently in patients with adrenal insufficiency receiving standard replacement therapy and requires immediate management. In a postal survey of 840 patients with Addison’s disease in four countries, about 8% of respondents needed hospital treatment for an adrenal crisis annually. Initial management in adrenal crisis is to treat hypotension and to reverse the electrolyte abnormalities and cortisol deficiency. Treatment consists of immediate intravenous administration of 100 mg hydrocortisone and rapid rehydration with normal saline infusion under continuous cardiac monitoring, followed by 100–200 mg hydrocortisone in glucose 5% per 24 h by continuous intravenous infusion; alternatively, hydrocortisone can be given by intravenous or intramuscular injection every 6 h at a dose of 50–100 mg depending on age and body surface area. With daily hydrocortisone doses of 50 mg or more, mineralocorticoid replacement in primary adrenal insufficiency can be stopped or reduced because this dose is equivalent to 0.1 mg fludrocortisone. Once the patient’s condition is stable, intravenous glucocorticoid treatment can be decreased over the next few days and an oral maintenance dose can be instituted.

Special diagnostic and therapeutic conditions

Adrenal insufficiency in critically ill patients

Adrenal insufficiency is common in critically ill patients and is increasingly reported in sepsis, severe pneumonia, adult respiratory stress syndrome, trauma, HIV infection, or after treatment with etomidate. It can also be associated with structural damage to the adrenal gland, pituitary gland, or hypothalamus; however, many critically ill patients develop reversible failure of the HPA axis. The underlying pathophysiological mechanisms leading to adrenal insufficiency in the course of critical
illness are not clear; however, they include both decreased cortisol secretion and impaired glucocorticoid signal transduction. Proinflammatory cytokines could compete with corticotropin at its receptor or induce tissue resistance to glucocorticoids (figure 2).

In the absence of glucocorticoids, the glucocorticoid receptor is primarily in the cytoplasm as part of a complex with heat shock proteins and immunophilins. When ligands bind, the receptor undergoes conformational change, dissociates from the chaperone proteins, and moves into the nucleus, where it binds to positive or negative glucocorticoid response elements in the promoter regions of anti-inflammatory or pro-inflammatory genes. The glucocorticoid receptor can also inhibit the expression of pro-inflammatory genes independently of DNA binding by physically interacting with the transcription factor p65, a subunit of nuclear factor κB. This interaction inhibits p65–p50 heterodimer translocation into and action at the nucleus. Glucocorticoids can induce some anti-inflammatory effects through non-genomic effects. Membrane-bound glucocorticoid receptors can activate kinase pathways within minutes. The activation of the MAPK pathway results in the inhibition of cytosolic phospholipase A2α, whereas activated phosphatidylinositol 3-kinase leads to the induction of endothelial nitric oxide synthetase and the subsequent production of nitric oxide. Moreover, glucocorticoids can impair T-cell receptor signalling through non-genomic inhibition of FYN oncogene-related kinase and lymphocyte-specific protein tyrosine kinase by the glucocorticoid receptor.

In addition to sepsis itself, the medications used during its treatment can interfere with glucocorticoid synthesis and signal transduction. Furthermore, impaired blood supply to the pars distalis of the pituitary can induce pituitary ischaemia or necrosis, and the increased accumulation of nitric oxide, superoxide, or central neuropeptides or prostaglandins can contribute to a decrease in hypothalamic–pituitary hormone secretion in patients with sepsis.

A multidisciplinary, multispecialty task force of experts in critical care medicine was convened to provide recommendations on the diagnosis and management of adrenal insufficiency in critically ill patients. The diagnosis in this setting is confirmed by a change in total serum cortisol of less than 250 nmol/L (90 μg/L) after corticotropin (250 μg) administration or a randomly measured total cortisol of less than 275 nmol/L (100 μg/L). 200 mg hydrocortisone daily divided into four doses or as a continuous infusion of 240 mg per day

![Figure 2: Molecular mechanisms of glucocorticoid action during the inflammatory process](image-url)

(10 mg/h) for at least 7 days is recommended for septic shock. Methylprednisolone (1 mg/kg daily for at least 14 days) is recommended in patients with severe early acute respiratory distress syndrome. The role of glucocorticoid therapy in other critically ill patients has not been fully elucidated.132

Thyroid dysfunction

Patients with adrenal insufficiency and untreated hyperthyroidism should receive two or three times their usual glucocorticoid replacement dose to compensate for the increased cortisol clearance owing to the hyperthyroid state.133 In addition, to prevent adrenal crises, thyrroxine replacement in patients with hypothyroidism should start after the adrenal insufficiency has been excluded or treated.

Pregnancy

Adrenal insufficiency in pregnancy is quite rare; however, it can lead to substantial morbidity and even death of both mother and fetus if not diagnosed and treated promptly. Pregnancy is a physiological state of glucocorticoid excess and is associated with high serum concentrations of cortisol-binding globulin, free cortisol, and progesterone, especially in the latter stages.114 Patients with adrenal insufficiency in pregnancy should be treated with hydrocortisone 12–15 mg/m² daily, in three doses with the largest one given in the morning. At the onset of labour, the daily hydrocortisone dose should be doubled or tripled or a parenteral dose of 50–100 mg can be given during the second stage of labour. If the patient undergoes caesarean section, hydrocortisone should be given intravenously at a dose of 100 mg every 6 h then tapered over the next 48 h.115,116

Drug interactions

Anticonvulsants, such as phenytoin, phenobarbital, and carbamazepine, stimulate cytochrome P450 3A4, thereby inducing hepatic enzymes and leading to accelerated glucocorticoid metabolism and reduced glucocorticoid effect. By contrast, antiretroviral drugs, such as ritonavir, glucocorticoid metabolism and reduced glucocorticoid excess and is associated with high serum concentration (appendix).60

Conflict of interest

We declare that we have no conflicts of interest.

Contributors

EC undertook the literature search and data analysis and wrote the paper. NCM undertook the literature search, participated in preparation of the tables, and prepared the figures. GPC reviewed the paper critically and offered his comments. All the authors read and approved the final version.

References

8 Reichstein T. [The most important hormones of adrenal cortex]. Acta Endocrinol (Copenh) 1954; 17: 375–84.

31 Charrnadari E, Kino T, Chrousos GP. Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. Endocr Dev 2013; 24: 67–85.
Seminar

